LRRK2 (16M6) Rabbit Monoclonal Antibody

LRRK2 (16M6) Rabbit Monoclonal Antibody

Size1:50μL Price1:$128
Size2:100μL Price2:$230
Size3:200μL Price3:$380
Application:WB,IHC-P,ICC/IF,IF-P

Reactivity:Human,Mouse
Conjugate:Unconjugated
Optional conjugates: Biotin, FITC (free of charge).
See other 26 conjugates.

Gene Name:LRRK2
SKU: AMRe13445 Category: Recombinant Monoclonal Antibody Tags: , , , , , , ,

Summary

Production Name

LRRK2 (16M6) Rabbit Monoclonal Antibody

Description

Rabbit Monoclonal Antibody

Host

Rabbit

Application

WB,IHC-P,ICC/IF,IF-P

Reactivity

Human,Mouse

 

Performance

Conjugation

Unconjugated

Modification

Unmodified

Isotype

IgG

Clonality

Monoclonal Antibody

Form

Liquid

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Buffer

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% New type preservative N and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Purification

Affinity purification

 

Immunogen

Gene Name

LRRK2

Alternative Names

Leucine-rich repeat serine/threonine-protein kinase 2; Dardarin; PARK8; ROCO2; RIPK7; LRRK2

Gene ID

120892

SwissProt ID

Q5S007

 

Application

Dilution Ratio

WB 1:1000-1:5000, IHC-P/IF-P 1:100-1:200, ICC/IF 1:100-1:200

Molecular Weight

286kDa

 

Background

LRRK2 positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway. The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes. Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose 6 phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner. Regulates neuronal process morphology in the intact central nervous system (CNS). Plays a role in synaptic vesicle trafficking. Phosphorylates PRDX3. Has GTPase activity. May play a role in the phosphorylation of proteins central to Parkinson disease. Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, autophagy, and vesicle trafficking (PubMed:20949042, PubMed:22012985, PubMed:26824392, PubMed:29125462, PubMed:28720718, PubMed:29127255, PubMed:30398148, PubMed:29212815, PubMed:30635421, PubMed:21850687, PubMed:23395371, PubMed:17114044, PubMed:24687852, PubMed:26014385, PubMed:25201882). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29127255, PubMed:30398148, PubMed:29212815, PubMed:29125462, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB35, and RAB43 (PubMed:26824392, PubMed:28720718, PubMed:29127255, PubMed:30398148, PubMed:29212815, PubMed:29125462, PubMed:30635421, PubMed:23395371). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr- 72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Independent of its kinase activity, inhibits the proteosomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:29125462, PubMed:28720718, PubMed:29212815).